Bibliography

Annotated Bibliography

Quick References

These are provided here for easy copy-and-paste usage in other files.

[N15GWB]

Agazie et al. (2023), ApJL, 951, 1. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background https://ui.adsabs.harvard.edu/abs/2023ApJ…951L…8A

[N15astro]

Agazie et al. (2023), ApJL, 952, 2. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background https://ui.adsabs.harvard.edu/abs/2023ApJ…952L..37A

[N15NP]

Afzal et al. (2023), ApJL, 951, 1. The NANOGrav 15 yr Data Set: Search for Signals from New Physics https://ui.adsabs.harvard.edu/abs/2023ApJ…951L..11A

[N15data]

Agazie et al. (2023), ApJL, 951, 1. The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars https://ui.adsabs.harvard.edu/abs/2023ApJ…951L…9A

[N15anisotropy]

Agazie et al. (2023), ApJL, 956, 1. The NANOGrav 15 yr Data Set: Search for Anisotropy in the Gravitational-wave Background https://ui.adsabs.harvard.edu/abs/2023ApJ…956L…3A

[N15CWs]

Agazie et al. (2023), ApJL, 951, 2. The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries https://ui.adsabs.harvard.edu/abs/2023ApJ…951L..50A

[N15detchar]

Agazie et al. (2023), ApJL, 951, 1. The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget https://ui.adsabs.harvard.edu/abs/2023ApJ…951L..10A

[Behroozi2013]

: Behroozi, Wechsler & Conroy 2013. ApJ, 770, 1. The Average Star Formation Histories of Galaxies in Dark Matter Halos from z = 0-8 https://ui.adsabs.harvard.edu/abs/2013ApJ…770…57B/abstract

[BBR1980]

Begelman, Blandford & Rees 1980. Nature, 287, 5780. Massive black hole binaries in active galactic nuclei. https://ui.adsabs.harvard.edu/abs/1980Natur.287..307B/abstract

[Chen2017]

Chen, Sesana, & Del Pozzo 2017 Efficient computation of the gravitational wave spectrum emitted by eccentric massive black hole binaries in stellar environments https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.1738C/abstract

[Chen2019]

Chen, Sesana, Conselice 2019. MNRAS, 488, 1. Constraining astrophysical observables of galaxy and supermassive black hole binary mergers using pulsar timing arrays https://ui.adsabs.harvard.edu/abs/2019MNRAS.488..401C/abstract

[EN2007]

Enoki & Nagashima 2007. PTP, 117, 2. astro-ph/0609377. The Effect of Orbital Eccentricity on Gravitational Wave Background Radiation from Supermassive Black Hole Binaries https://ui.adsabs.harvard.edu/abs/2007PThPh.117..241E/abstract

[Enoki2004]

Enoki, Inoue, Nagashima, & Sugiyama 2004. ApJ, 615, 1. astro-ph/0404389. Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model https://ui.adsabs.harvard.edu/abs/2004ApJ…615…19E/abstract

[Genel2014]

Genel et al. (2014), MNRAS, 445, 1. Introducing the Illustris project: the evolution of galaxy populations across cosmic time https://ui.adsabs.harvard.edu/abs/2014MNRAS.445..175G

[Guo2010]

Guo, White, Li & Boylan-Kolchin 2010. MNRAS, 404, 3. How do galaxies populate dark matter haloes? https://ui.adsabs.harvard.edu/abs/2010MNRAS.404.1111G/abstract

[WMAP9]

Hinshaw, Larson, Komatsu et al. 2013. ApJS, 208, 2. (1212.5226). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. https://ui.adsabs.harvard.edu/abs/2013ApJS..208…19H/abstract

[Heggie1975]

Heggie (1975), MNRAS, 173,. Binary evolution in stellar dynamics. https://ui.adsabs.harvard.edu/abs/1975MNRAS.173..729H

[Hills1975]

Hills (1975), AJ, 80,. Encounters between binary and single stars and their effect on the dynamical evolution of stellar systems. https://ui.adsabs.harvard.edu/abs/1975AJ…..80..809H

[Hogg1999]

Hogg 1999. arXiv. (astro-ph/9905116). Distance measures in cosmology. https://ui.adsabs.harvard.edu/abs/1999astro.ph..5116H

[Kelley2017a]

Kelley, Blecha, and Hernquist (2017), MNRAS, 464, 3. Massive black hole binary mergers in dynamical galactic environments https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.3131K

[Kelley2017b]

Kelley et al. (2017), MNRAS, 471, 4. The gravitational wave background from massive black hole binaries in Illustris: spectral features and time to detection with pulsar timing arrays https://ui.adsabs.harvard.edu/abs/2017MNRAS.471.4508K

[Kelley2018]

Kelley et al. (2018), MNRAS, 477, 1. Single sources in the low-frequency gravitational wave sky: properties and time to detection by pulsar timing arrays https://ui.adsabs.harvard.edu/abs/2018MNRAS.477..964K

[Klypin2016]

: Klypin, Yepes, Gottlöber, et al. 2016. MNRAS, 457, 4. MultiDark simulations: the story of dark matter halo concentrations and density profiles https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.4340K/abstract

[KH2013]

Kormendy & Ho 2013. ARAA, 51, 1. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies https://ui.adsabs.harvard.edu/abs/2013ARA%26A..51..511K/abstract

[Leja2020]

Leja et al. (2020), ApJ, 893, 2. A New Census of the 0.2 < z < 3.0 Universe. I. The Stellar Mass Function https://ui.adsabs.harvard.edu/abs/2020ApJ…893..111L

[MM2013]

McConnell & Ma 2013. ApJ, 764, 2. Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties https://ui.adsabs.harvard.edu/abs/2013ApJ…764..184M/abstract

[NFW1997]

Navarro, Frenk & White 1997. ApJ, 490, 2. A Universal Density Profile from Hierarchical Clustering https://ui.adsabs.harvard.edu/abs/1997ApJ…490..493N/abstract

[Nelson2015]

Nelson et al. (2015), A&C, 13,. The illustris simulation: Public data release https://ui.adsabs.harvard.edu/abs/2015A&C….13…12N

[Peters1964]

Peters 1964. PR, 136, 4B. Gravitational Radiation and the Motion of Two Point Masses https://ui.adsabs.harvard.edu/abs/1964PhRv..136.1224P/abstract

[Phinney2001] (1,2)

Phinney 2001. arXiv. (astro-ph/0108028). A Practical Theorem on Gravitational Wave Backgrounds. https://ui.adsabs.harvard.edu/abs/2001astro.ph..8028P/abstract

[Quinlan1996]

Quinlan 1996 The dynamical evolution of massive black hole binaries I. Hardening in a fixed stellar background https://ui.adsabs.harvard.edu/abs/1996NewA….1…35Q/abstract

[Rodriguez-Gomez2015]

: Rodriguez-Gomez et al. (2015), MNRAS, 449, 1. The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models https://ui.adsabs.harvard.edu/abs/2015MNRAS.449…49R

[Sesana2004]

Sesana, Haardt, Madau, & Volonteri 2004. ApJ, 611, 2. astro-ph/0401543. Low-Frequency Gravitational Radiation from Coalescing Massive Black Hole Binaries in Hierarchical Cosmologies http://adsabs.harvard.edu/abs/2004ApJ…611..623S

[Sesana2006]

Sesana, Haardt & Madau et al. 2006 Interaction of Massive Black Hole Binaries with Their Stellar Environment. I. Ejection of Hypervelocity Stars https://ui.adsabs.harvard.edu/abs/2006ApJ…651..392S/abstract

[Sesana2008]

Sesana, Vecchio, Colacino 2008. MNRAS, 390, 1. (0804.4476). The stochastic gravitational-wave background from massive black hole binary systems: implications for observations with Pulsar Timing Arrays. https://ui.adsabs.harvard.edu/abs/2008MNRAS.390..192S/abstract

[Sesana2010]

Sesana 2010 Self Consistent Model for the Evolution of Eccentric Massive Black Hole Binaries in Stellar Environments: Implications for Gravitational Wave Observations https://ui.adsabs.harvard.edu/abs/2010ApJ…719..851S/abstract

[Sijacki2015]

Sijacki et al. (2015), MNRAS, 452, 1. The Illustris simulation: the evolving population of black holes across cosmic time https://ui.adsabs.harvard.edu/abs/2015MNRAS.452..575S

[Siwek2023]

Siwek, Weinberger, and Hernquist (2023), MNRAS, 522, 2. Orbital evolution of binaries in circumbinary discs https://ui.adsabs.harvard.edu/abs/2023MNRAS.522.2707S

[Springel2010]

Springel (2010), MNRAS, 401, 2. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh https://ui.adsabs.harvard.edu/abs/2010MNRAS.401..791S

[Vogelsberger2014]

Vogelsberger et al. (2014), MNRAS, 444, 2. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe https://ui.adsabs.harvard.edu/abs/2014MNRAS.444.1518V

NASA/ADS Quick-Reference

Generating references on NASA ADS:

  • For short references (e.g. in code files):

    * [%1.1h%Y]_ %3.1M (%Y).
    
  • For the Annotated Bibliography section:

    * **%3.1M %Y**, [%1.1h%Y]_ - `%T <%u>`_\n
    
  • For full references (e.g. in the Quick References section above):

    .. [%1.1h%Y] %3.1M (%Y), %q, %V, %S.\n   %T\n   %u\n